Cooperative action of biochemical and biomechanical signals regulates the interactions between cells and the supporting matrix in natural tissues. Herein, we describe a hydrogel for 4D cell culture which allows user-defined stiffening of the cellular environment and presentation of bioadhesive cues in an orthogonal manner using light of different wavelengths. Stiffening of the gel is initiated by VIS light, while activation of the biochemical function is triggered by UV light. We demonstrate the versatility of this system by triggering, directing and/or hindering cell migration from spheroids based on photoactivated stiffening or integrin-binding to the hydrogels. This material allows in situ and independent manipulation of the physicochemical cues in the cellular microenvironment in vitro, and could eventually be extended to in vivo.