Capacitive deionization with activated carbon (AC) electrodes has been widely applied for removing charged ions from aqueous solutions. Such carbon electrodes commonly contain a minor polymer binder and a minor carbon additive content. The choice of carbon additives is rarely investigated in depth regarding the performance enhancement/deterioration they might bring. In this work, we explored the influence of various carbon types, namely, onion-like carbon, carbon black, and micro-mesoporous carbons, on the desalination capacity and rate. Based on the cycling performance of 100 cycles, we draw relationships between the physicochemical properties of different carbon types and their results on electrochemical desalination performance. The results indicate that the direct use of the activated carbon electrode without additives leads to a higher desalination capacity of approximately 10 mg/g in early cycles, though at the cost of a lower desalination rate of 6 μg/g/s. The larger AC particles limit the intraparticle ion transportation due to the increased diffusion path length. The highest desalination rate (20 μg/g/s) is enabled by the incorporation of small and less porous additives, as it shortens the ion diffusion path length due to the increased size dispersion, hence improving the overall ion transport and desalination rates.