Redox-Responsive and Thermoresponsive Supramolecular Nanosheet Gels with High Young's Moduli

Abstract Supramolecular gels made from 2D building blocks are emerging as one of the novel multifunctional soft materials for various applications. This study reports on a class of supramolecular nanosheet gels formed through a reversible self-assembly process involving both intramolecular folding and intermolecular self-assembly of poly[oligo(ethylene glycol)-co-(phenyl-capped bithiophenes)]. Such hierarchical self-assembled structure allows the gels to switch between sol and gel states under either redox or thermostimulus. Moreover, the gels illustrate high Young's moduli, compared to their controls that are made from the same oligo(ethylene glycol) and phenyl-capped bithiophenes blocks but have highly covalent-crosslinked structures. The example might open a window for emerging supramolecular 2D materials to develop mechanically robust and stimuli-responsive soft materials without compromising their intrinsic functions.