Energy Materials

The Research Department Energy Materials explores electrochemical materials for sustainable energy storage, innovative water technologies, and eco-friendly recycling solutions.

The Research Department Energy Materials develops materials that can effectively transport and store ions and electrical charges across several length scales. We develop materials that can effectively transport and store ions and electrical charges across several length scales o. Important electrode materials are nanoporous carbons, oxides, carbides, and sulfides, and their hybrids. A key feature is our streamlined workflow from material synthesis, comprehensive structural and chemical material characterization, electrochemical benchmarking, and complementary in situ analysis.

A particular focus is on 2D materials, especially MXene and MBene, to enable rapid charge/discharge supercapacitors and next-next-generation sodium- and lithium-ion batteries. The reversible uptake and controlled release of ions also enables the desalination of seawater and ion separation to separate pollutants such as lead or recover valuable materials such as lithium.

We use various characterization methods, including in situ, for a comprehensive mechanistic understanding. In addition, we are increasingly using digital methods for predictive materials research and digital twinning of battery research. Our collaborations include international basic research as well as industrial projects.

Prof. Dr. Volker Presser
Head of Energy Materials

Kontakt

Deputy Group Leader
M.Sc. Jean Gustavo de Andrade Ruthes
Doctoral Student
Phone: +49 (0)681-9300-218
Laboratory Safety Officer
M.Sc. Zeyu Fu
Technician
Phone: +49 (0)681-9300-368
Secretary
Sylvia de Graaf
Secretary
Phone: +49 (0)681-9300-501
Team Members
Phone: +49 (0)681-9300-151
Phone: +49 (0)681-9300-218
Phone: +49 (0)681-9300-368
Phone: +49 (0)681-9300-108/251
Phone: +49 (0)681-9300-374
Phone: +49 (0)681-9300-268
Phone: +49 (0)681-9300-374
Phone: +49 (0)681-9300-230
Phone: +49 (0)681-9300-liud
Phone: +49 (0)681-9300-208
Phone: +49 (0)681-9300-314
Phone: +49 (0)681-9300-402
Phone: +49 (0)681-9300-155/217
Phone: +49 (0)681-9300-319
Phone: +49 (0)681-9300-365
Phone: +49 (0)681-9300-365
Phone: +49 (0)681-9300-402
Phone: +49 (0)681-9300-151
Phone: +49 (0)681-9300-268
Research

Material synthesis

Our team specializes in developing, analyzing, and applying electrochemically active materials and interfaces, focusing on integrating electrochemical activity with electrical conductivity through advanced hybrid materials. We utilize techniques such as sol-gel processes, atomic layer deposition, and electrospinning, supported by comprehensive characterization tools like electron microscopy, X-ray diffraction, and spectroscopy. We extend our work to in situ and in operando methods to deepen our understanding of these materials. Our expertise encompasses a wide array of materials, including carbon and 2D materials like carbon onions and MXene, as well as diverse metal oxides and conversion materials.

Energy storage

Electrochemical energy storage is at the core of sustainable technologies to store, convert, and recover energy. Our research team explores next-generation electrode materials for Sodium- and Lithium-ion batteries, advanced supercapacitors, and novel hybrid systems. A particular focus is on next-next generation electrode materials, including MXene, high-entropy materials, and nanoscaled hybrid materials. We capitalize on an array of synthesis and characterization methods to employ intercalation, conversion reactions, and alloying reactions for boosting the charge storage capacity and charge/discharge rates. Digitalization, digital twinning, and modelling of energy materials and electrode fabrication complements our research portfolio, including basic research and industrial partnerships.

Water technologies

Energy materials are not just prime candidates for electrochemical energy storage but also are gateways to novel water technologies. Via processes much like for batteries and supercapacitors, that is, redox processes (ion intercalation, alloying and conversion reactions) and ion electrosorption, we can manage the flow of ions. We can selectively immobilize and extract specific ions and drive that process not by high pressure or membrane filtration, but by electrochemical processes and ion selective materials. Our key research activities include general seawater desalination, Lithium-ion extraction, and heavy metal ion removal. Our vision is to have electrochemical processes for an array of elements and compounds for energy-efficient deionization toward circular material use, local elemental harvesting, and pollutant removal.

Publications

Emerging Frontiers in Multichannel Membrane Capacitive Deionization: Recent Advances and Future Prospects

Kim, Hyunjin | Kim, Seonghwan | Lee, Byeongho | Presser, Volker | Kim, Choonsoo

Langmuir , 2024, 40 (9), 4567-4578.
https://pubs.acs.org/doi/full/10.1021/acs.langmuir.3c03648

OPEN ACCESS Discover more
Hydrogen densification in carbon nanopore confinement: Insights from small-angle neutron scattering using a hierarchical contrast model

Stock, Sebastian | Seyffertitz, Malina | Kostoglou, Nikolao | Rauscher, Max Valentin | Presser, Volker | Demé, Bruno | Cristiglio, Viviana | Paris, Oskar

Carbon , 2024, 221 118911.
https://www.sciencedirect.com/science/article/pii/S0008622324001301

OPEN ACCESS Discover more
Direct lithium extraction: A new paradigm for lithium production and resource utilization

Farahbakhsh, Javad | Arshadi, Faezeh | Mofidi, Zahra | Mohseni-Dargah, Masoud | Kök, Cansu | Assefi, Mohammad | Soozanipour, Asieh | Zargar, Masoumeh | Asadnia, Mohsen | Boroumand, Yasaman | Presser, Volker | Razmjou, Amir

Desalination , 2024, 575 117249.
https://www.sciencedirect.com/science/article/pii/S0011916423008810

OPEN ACCESS Discover more
High-Performance Lithium-Ion Batteries with High Stability Derived from Titanium-Oxide- and Sulfur-Loaded Carbon Spherogels

Bornamehr, Behnoosh | Arnold, Stefanie | Dun, Chaochao | Urban, Jeffrey J. | Zickler, Gregor A. | Elsaesser, Miachel S. | Presser, Volker

ACS Applied Materials & Interfaces , 2024, 16 (5), 5881-5895.
https://pubs.acs.org/doi/10.1021/acsami.3c16851

OPEN ACCESS Discover more
Black goes green: single-step solvent exchange for sol-gel synthesis of carbon spherogels as high-performance supercapacitor electrodes

Salihovic, Miralem | Pameté, Emmanuel | Arnold, Stefanie | Sulejmani, Irena | Bartschmid, Theresa | Hüsing, Nicola | Fritz-Popovski, Gerhard | Dun, Chaochao | Urban, Jeffrey J. | Presser, Volker | Elsaesser, Miachel S.

Energy Advances , 2024, 3 (2), 482-494.
https://pubs.rsc.org/en/content/articlelanding/2024/ya/d3ya00480e

OPEN ACCESS Discover more
Best practice for electrochemical water desalination data generation and analysis

Torkamanzadeh, Mohammad | Kök, Cansu | Burger, Peter Rolf | Ren, Panyu | Zhang, Yuan | Lee, Juhan | Kim, Choonsoo | Presser, Volker

Cell Reports Physical Science , 2023, 4 (11), 101661.
https://www.sciencedirect.com/science/article/pii/S2666386423004848

OPEN ACCESS Discover more
Effect of cation size of binary cation ionic liquid mixtures on capacitive energy storage

Seltmann, Anna | Verkholyak, Taras | Golowicz, Dariusz | Pameté, Emmanuel | Kuzmak, Andrij | Presser, Volker | Kondrat, Svyatoslav

2023, 391 123369.
https://www.sciencedirect.com/science/article/pii/S016773222302175X?via%3Dihub

OPEN ACCESS Discover more
Polyacrylonitrile-containing amphiphilic block copolymers: self-assembly and porous membrane formation

Gemmer, Lea | Niebuur, Bart-Jan | Dietz, christian | Rauber, Daniel | Plank, Martina | Frieß, Florian V. | Presser, Volker | Stark, Robert W. | Kraus, Tobias | Gallei, Markus

Polymer Chemistry , 2023, 14 (42), 4825-4837.
https://pubs.rsc.org/en/content/articlelanding/2023/PY/D3PY00836C

OPEN ACCESS Discover more
Wet-Chemical Etching and Delamination of MoAlB into MBene and Its Outstanding Photocatalytic Performance

Bury, Dominika | Jakubcza, Michal | Purbayanto, Muhammad A. K. | Birowska, Magdalena | Wójcik, Anna | Moszczynska, Dorota | Eisawi, Karamullah | Prenger, Kaitlyn | Presser, Volker | Naguib, Michael | Jastrzebska, Agnieszka M.

Advanced Functional Materials , 2023, 33 2308156.
https://onlinelibrary.wiley.com/doi/10.1002/adfm.202308156

OPEN ACCESS Discover more
Surface-Initiated Living Anionic Polymerization of Functional Methacrylates from the Surface of Organic Particles

Schmitt, Deborah | Abdel-Hafez, Salma M. | Tummeley, Marco | Schünemann, Volker | Schneider, Marc | Presser, Volker | Gallei, Markus

Macromolecules , 2023, 56 (17), 7086-7101.
https://pubs.acs.org/doi/10.1021/acs.macromol.3c01257

OPEN ACCESS Discover more
1 2 3 4 26