Design of high-throughput-compatible protocols for microencapsulation, cryopreservation and release of bovine spermatozoa

With a rate exceeding 90% in cattle, artificial insemination (AI) is the prime reproduction technology in stock farming. AI success is expected to increase with extended persistence of sperms in utero. In order to enable controlled sperm release during artificial insemination we have designed two strategies for the automated microencapsulation of bovine spermatozoa in either alginate-Ca2+ or cellulose sulfate (CS)-poly-diallyldimethyl ammonium chloride (pDADMAC) capsules using standard encapsulation hardware. Animal protein- and citric acid-free sperm extenders and encapsulation protocols have been developed to ensure encapsulation compatible with sperm physiology. Bovine spermatozoa have showed high motility rates inside CS-pDADMAC-based capsules, were preserved by standard cryoconservation and rescued with high viability/motility following disintegration of the thawed capsules. CS-pDADMAC-based capsules break up within 72 h after addition of either purified cellulase or cellulase-filled alignate-Ca2+ capsules. The controlled release, associated with the microencapsulation of bovine spermatozoa, may be a promising approach to increase the success rate of artificial insemination. © 2005 Elsevier B.V. All rights reserved.