Kann man Atome sehen? Rasterkraftmikroskopie und die Philosophie des Abbildens.

In welchem Maße vermag die Rasterkraftmikroskopie, einzelne Atome abzubilden? Diese Frage zielt nicht nur auf den versierten Einsatz von Messgeräten. Vielmehr stellt sich dabei die grundsätzliche Problematik ein, was "Sehen" und "Abbilden" überhaupt heißen kann. Diesem konzeptuellen Problem können und sollten sich Physik und Philosophie gemeinsam stellen. Sehen Sie Atome? Diese Frage stellte Hans-Joachim Güntherodt (1939 – 2014), der Basler Pionier der Rasterkraftmikroskopie, oft seinen Mitarbeitern beim Laborrundgang. Sie hatte nicht nur in den ersten Jahren nach der Einführung dieser experimentellen Methode ihre Berechtigung, sondern führt auf ganz grundsätzliche Aspekte. Diese lassen sich an einem aktuellen, sehr erfolgreichen Experiment diskutieren, bei dem ein einzelnes Pentacen-Molekül mit einem Rasterkraftmikroskop untersucht wird. In der Darstellung und Interpretation seines Ergebnisses (Abb. 1) greifen Schönheit der Darstellung, Klarheit der Aussage und konzeptionelle Verwirrung unmittelbar ineinander. Es stellen sich verschiedene Fragen, zum Beispiel ob die Einfärbung der Messergebnisse angemessen ist. Welchen Glauben an die Existenz von Atomen setzt es voraus, diese als schillernde Kugeln darzustellen? Ausgehend von diesen Fragen möchten wir hier zeigen, was Philosophen und Physiker in den gemeinsamen Blick nehmen können, um Grundsätzliches über Sehen und Abbilden in der Naturwissenschaft zu lernen. Doch zunächst zur Funktionsweise eines Rasterkraftmikroskops: Dieses fährt mit einer extrem feinen Spitze mit einem Radius von nur wenigen Nanometern die zu untersuchende Oberfläche ab. Anhand der gemessenen Kräfte, die auf die Spitze wirken, lassen sich die Wechselwirkungen zwischen Spitze und Probe kartieren. Regelt man den Abstand der Spitze so nach, dass eine konstante Kraft wirkt, kann man eine Karte der Oberflächenform aufzeichnen. Im einfachsten Fall berührt die Spitze in Kontakt dabei die Probe. Die repulsiven Kräfte zwischen Spitze und Oberfläche sind über die Verbiegung einer mikroskopischen Blattfeder messbar, die an ihrem Ende die Spitze trägt. Die Spitze fährt also im repulsiven Kontakt die Form der Oberfläche nach. Das Ergebnis der Messung ist eine Zahlenmatrix, welche die vertikale Position der Spitze als Funktion ihrer lateralen Position angibt. Daraus wird ein Bild erzeugt, in dem die vertikale Position als Farbe kodiert ist. Typische Farbskalen weisen höheren Zahlenwerten hellere Farbtöne zu. Kontraste werden eingestellt, indem der Farbverlauf an die Verteilung der gemessenen Höhenwerte angepasst wird. Der Farbverlauf ist in der Regel so gewählt, dass die topographischen Kontraste gut zu erkennen sind. Teilweise sind die Ergebnisse auch als berechnete Projektion einer dreidimensionalen Fläche dargestellt, wobei durch Beleuchtungs- und Schattierungseffekte Details der Topographie noch deutlicher hervortreten (Abb. 1 und Beispiel im Infokasten).