Friction forces between human fingertip and a Braille display were recorded simultaneously with electroencephalographic (EEG) signals related to the somatosensory cortex. The correlation between frictional stimuli and event-related EEG signals was analyzed. Raising and lowering the dots of the Braille display caused significant N50 and P110 waves in the event-related EEG signal, but variations in the force stimulus by a factor of two between different Braille pattern did not cause significant differences in the EEG responses related to early tactile processing. Raising and lowering the dots of the Braille display triggers a characteristic temporal development of friction due to viscoelastic skin relaxation.